作者单位
摘要
1 三峡大学电气与新能源学院,湖北省微电网创新协同中心,湖北 宜昌 443002
2 三峡大学材料与化工学院,湖北 宜昌 443002
水系锌离子电池由于其优异的安全性、地壳丰度、成本低廉及绿色环保等优势被认为是一种有前景的储能设备,但设计出一种高比容量、长循环寿命及优异倍率性能的水系锌离子电池正极材料依然面临诸多挑战。本文提出了一种重金属钨掺杂改性的V2O5纳米片球水系锌离子电池正极材料。钨掺杂提高了V2O5的晶面间距和离子迁移速率,且W-O键的形成明显改善了V2O5在循环过程中因结构破坏,较低的本征电导率等问题导致的容量衰减情况。W掺杂的V2O5在0.1 A/g电流密度下循环100圈后比容量为195 mA·h/g,在1 A/g大电流密度下循环1 000圈后比容量为243 mA·h/g。此工作为今后设计出高性能水系锌离子电池正极材料提供了一种简易、高效、可行的方案。
正极材料 锌离子电池 钨掺杂五氧化二钒 cathode material zinc ion battery tungsten doped vanadiumpentoxide 
硅酸盐学报
2023, 51(7): 1697
作者单位
摘要
1 三峡大学电气与新能源学院, 湖北省微电网创新协同中心, 湖北 宜昌 443002
2 三峡大学材料与化工学院, 湖北 宜昌 443002
锡基氧化物及其合金具有制备简单和理论比容量高等优点, 是一种有前途的钠离子电池负极材料。然而, 锡基氧化物及其合金在循环过程中会发生颗粒团聚及体积形变, 导致电极粉化、容量衰减和倍率性能差等问题。在此, 本工作采用氯化钠模板法合成了Bi/SnOx颗粒锚定在超薄碳层上的复合材料(Bi/SnOx@C), 构筑了一种均匀的Bi/SnOx@C异质结构。其中, 超薄碳层可以有效抑制Bi/SnOx复合颗粒的团聚并增加电极材料比表面积, 提供更多活性位点, 同时Bi/SnOx也能够贡献更多的比容量。超薄碳层与Bi/SnOx复合颗粒的协同作用可以有效提高电极材料循环稳定性, 对于构筑高性能电极材料具有重要意义。
氯化钠模板 超薄碳层 负极材料 钠离子电池 chloride template ultrathin carbon sheet anode material sodium-ion batteries 
硅酸盐学报
2022, 50(11): 2909
Author Affiliations
Abstract
1 School of Sciences, Hebei University of Technology, Tianjin 300401, China
2 School of Physical Science and Technology, Southwest University, Chongqing 400715, China
3 Hebei Jiya Electronics Co., Ltd., Shijiazhuang 050071, China
4 Hebei Provincial Research Center of LCD Engineering Technology, Shijiazhuang 050071, China
Image sticking in liquid crystal display (LCD) is related to the residual direct current (DC) voltage (RDCV) on the cell and the dynamic response of the liquid crystal materials. According to the capacitance change of the liquid crystal cell under the DC bias, the saturated RDCV (SRDCV) can be obtained. The response time can be obtained by testing the optical dynamic response of the liquid crystal cell, thereby evaluating the image sticking problem. Based on this, the image sticking of vertical aligned nematic (VAN) LCD (VAN-LCD) with different cell thicknesses (3.8 μm and 11.5 μm) and different concentrations of γ-Fe2O3 nanoparticles (0.017 wt.%, 0.034 wt.%, 0.051 wt.%, 0.068 wt.%, 0.136 wt.%, 0.204 wt.%, and 0.272 wt.%) was evaluated, and the effect of nano-doping was analyzed. It is found that the SRDCV and response time decrease firstly and then increase with the increase of the doping concentration of γ-Fe2O3 nanoparticles in the VAN cell. When the doping concentration is 0.034 wt.%, the γ-Fe2O3 nanoparticles can adsorb most of the free impurity ions in liquid crystal materials, resulting in 70% reduction in the SRDCV, 8.11% decrease in the decay time, and 15.49% reduction in the rise time. The results show that the doping of γ-Fe2O3 nanoparticles can effectively improve the image sticking of VAN-LCD and provide useful guidance for improving the display quality.
nanoparticles doping image sticking SRDCV response time VAN-LCD 
Chinese Optics Letters
2020, 18(3): 033501
裴亮 1刘阳 1,2,*谭海 2高琳 1
作者单位
摘要
1 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
2 国家测绘地理信息局卫星测绘应用中心, 北京 100048
提出了基于改进的深度学习全卷积神经网络的资源三号遥感影像云检测方法。将预训练后的深层卷积神经网络全连接层改为全卷积层,采用反卷积方法对特征图进行上采样,优化改进网络结构,并采用Adam梯度下降法加速收敛。利用资源三号云区影像数据集对网络进行训练,将上采样后的影像特征输入sigmoid分类器进行分类。实验结果表明,该方法检测精度和速度均优于传统方法,准确率可达90.11%,单张影像检测耗时可缩短至0.46 s。
遥感 资源三号影像 深度学习 全卷积网络 云检测 
激光与光电子学进展
2019, 56(5): 052801
作者单位
摘要
辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
提出一种结合全卷积神经网络与条件随机场的资源3号卫星遥感影像云检测方法。优化了全卷积神经网络(FCN)模型,对3次上采样后的全卷积神经网络(FCN-8s)进行上采样,采用自适应+动量算法调整参数学习率加速收敛;将全卷积神经网络与条件随机场结合,以全卷积输出影像作为前端一阶势,高斯核函数作为后端二阶势;加入mean-shift区域约束0条件保护影像的局部特征信息,运用平均场算法推断条件随机场模型后验概率。实验结果表明,本研究提出的云检测方法可将影像云区识别准确率提高至97.38%,较FCN-8s算法提高13.42%。
遥感 云检测 全卷积神经网络 资源3号遥感影像 条件随机场 高斯核 平均场算法 
激光与光电子学进展
2019, 56(10): 102802
高琳 1,2,*宋伟东 1,*谭海 2刘阳 1,2
作者单位
摘要
1 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
2 国家测绘地理信息局卫星测绘应用中心, 北京 100048
为提高影像云识别精度,提出一种多尺度膨胀卷积深层神经网络云识别方法。结合卫星影像特征,设计云识别卷积神经网络结构,该结构包含深层特征编码模块、局部多尺度膨胀感知模块以及云区预测解码模块。首先,编码模块中通过基础卷积层获取深度特征;其次,联合多尺度膨胀卷积和池化层共同感知,每层操作连接非线性函数,以提升网络模型的表达能力;最后,云区预测解码模块中融合对应编码模块的特征,再利用L1正则化上采样算法实现端对端的像素级云识别结果。选用典型云遮挡区域影像进行云识别实验,并与Otsu算法和FCN-8S算法进行对比。结果表明,本文所提算法的检测精度较高,Kappa系数显著提升。
遥感 神经网络 膨胀卷积 云识别 资源三号卫星影像 全卷积网络 
光学学报
2019, 39(1): 0104002
作者单位
摘要
西南科技大学计算机科学与技术学院, 四川绵阳 621010
针对现有的基于卷积神经网络的车辆目标检测算法不能有效地适应目标尺度变化、自身形变以及复杂背景等问题, 提出了一种融合多尺度上下文卷积特征的车辆目标检测算法。首先采用特征金字塔网络获取多个尺度下的特征图, 并在每个尺度的特征图中通过区域建议网络定位出候选目标区域, 然后引入候选目标区域的上下文信息, 与提取的目标多尺度特征进行融合, 最后通过多任务学习联合预测出车辆目标位置和类型。实验结果表明, 与多种主流检测算法相比, 本算法具有更强的鲁棒性和准确性。
卷积神经网络 多尺度特征 上下文信息 车辆检测 convolutional neural network multi-scale feature context information vehicle detection 
光电工程
2019, 46(4): 180331
作者单位
摘要
1 河北工业大学 理学院, 天津 300401
2 河北冀雅电子有限公司, 河北 石家庄 050071
3 河北省液晶显示器工程技术研究中心, 河北 石家庄 050071
为了探究液晶材料的介电性能,本文研究了4PPTGS和4PUTGS两种含氟三环NCS类液晶材料的介电各向异性和介电损耗。首先用精密LCR表(Agilent E4980A)测量液晶盒的电容并用双盒模型和液晶盒电容模型得到4PPTGS和4PUTGS两种液晶材料的平行和垂直介电常数,再由电压-电容特性曲线得到它们的阈值电压,并进一步探讨了介电各向异性和阈值电压对温度的依耐性; 然后,在20 Hz~10 kHz范围内研究了外加电压频率对液晶材料介电损耗的影响,两种液晶材料在1 kHz左右都存在介电损耗峰值,为了减小器件的功耗和提升器件的质量,液晶材料应选择在介电损耗小的频率下工作; 最后,通过对平行和垂直排列向列相盒中液晶材料在不同电压下介电损耗的测试与分析,介电损耗的变化是由于在外加电场下液晶分子固有偶极矩的取向极化引起的,介电损耗值的大小与液晶分子的排列状态密切相关。此项研究对提升液晶材料在应用中的介电性能具有一定的指导意义。
液晶材料 电容 介电各向异性 介电损耗 LC materials capacitance dielectric anisotropy dielectric loss 
液晶与显示
2018, 33(7): 561
作者单位
摘要
1 河北工业大学 理学院, 天津 300401
2 河北冀雅电子有限公司, 河北 石家庄 050071
3 河北省液晶显示器工程技术研究中心, 河北 石家庄 050071
液晶材料的介电各向异性通常与频率有关。为进一步研究频率对液晶材料介电常数的影响, 首先, 使用紫外可见分光光度计(METASH UV-9000S)和表面轮廓仪(Contor GK-T)分别测量液晶盒厚度以及聚酰亚胺(PI)取向层厚度, 通过精密热台(LTS 350)控制实验温度20 ℃, 使用精密LCR表(Agilent E4980A)测定4种不同液晶材料在100~2 000 Hz的频率内的平行和垂直排列向列相液晶盒电容; 然后, 利用液晶盒电容模型计算出不同频率下液晶的平行和垂直介电常数, 并绘制频率-介电各向异性曲线; 最后, 分析频率对液晶介各向异性的影响。实验结果表明: 温度一定, 正性液晶的介电各向异性随频率的升高而减小, 然后逐渐趋于平缓, 负性液晶的介电各向异性随频率变化基本保持不变。此项研究对进一步分析液晶材料的介电特性具有一定的指导意义。
液晶盒电容模型 介电各向异性 频率 电容 LC cell capacitance model dielectric anisotropy frequency capacitance 
液晶与显示
2018, 33(3): 175
作者单位
摘要
1 西南科技大学计算机科学与技术学院, 四川 绵阳 621010
2 四川大学计算机学院, 四川 成都 610065
针对视频序列的稳健性目标跟踪问题,提出一种基于卷积神经网络(CNN)与一致性预测器(CP)的视觉跟踪算法。该算法通过构建一个双路输入CNN模型,同步提取帧采样区域和目标模板的高层特征,利用逻辑回归方法区分目标与背景区域;将CNN嵌入至CP框架,利用算法随机性检验评估分类结果的可靠性,在指定风险水平下,以域的形式输出分类结果;选择高可信度区域作为候选目标区域,优化时空域全局能量函数获得目标轨迹。实验结果表明,该算法能够适应目标遮挡、外观变化以及背景干扰等复杂情况,与当前多种跟踪算法相比具有更强的稳健性和准确性。
机器视觉 目标跟踪 卷积神经网络 一致性预测器 时空域能量函数 
光学学报
2017, 37(8): 0815003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!